
ROBO 599: Visual Intertial State Estimation on Wheeled and Legged Robots

Mitchell Fogelson MFOG@SEAS.UPENN.EDU

Abstract

Visual inertial odometry (VIO) is a method
which determines the state and orientation of a
robot using sequential images. State estimation
is a critical component in allowing robots to
navigate and manipulate the environment around
them. We define the state of the robot as position,
orientation, linear velocity and angular velocity.

X = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]

State estimation, for a typical mobile robot, is
usually calculated by fusing onboard sensors
such as inertial measurement units (IMUs) and
wheel encoders. With the improvements of cam-
era and computer technology in recent years,
VIO has become more reliable tool to improve
robot state estimation in real time. This pa-
per investigates integrating VIO to improve the
robot state estimation. This project was moti-
vated by improvements which could be applied
to legged robots. However, the following study
was only developed and tested on a TurtleBot, a
differential drive robot. We used the Intel Re-
alsense ZR300 RGB-D camera and RTAB-Map
ROS package to calculate the odometry estimate.
To fuse the sensor outputs of the system an Ex-
tended Kalman Filter (EKF) approach using the
ROS robot localization package was used. This
paper will discuss the motivation for the project,
the experiments, results as well as discussion for
further study.

1. Introduction
1.1. Motivation

Legged robots offer large benefits for outdoor mobility.
They can easily adapt to a multitude of terrains and carry
significant payloads (Haldun, 2009). Current systems,

University of Pennsylvania, Robo 599 Course Project.
Copyright 2017 by the author(s).

Figure 1. The Minitaur Robot

Figure 2. The TurtleBot

like the Minitaur Robot seen in Figure 1, are mostly re-
motely controlled by an operator and have no vision sys-
tems (Ghost, 2016). By improving state estimation of
Minitaur it will have greater ability to navigate and ma-
nipulate its environment autonomously. This will allow for
many useful applications including last mile delivery, ware-
house monitoring and search and rescue.

1.2. Goals

The goal of this investigation was to improve robot state es-
timation by integrating realtime visual odometry methods.
The project sought to develop a modular architecture that

Fogelson

Figure 3. Intel Realsense ZR300

could be applied to any robotic system including but not
limited to differential drive and legged robots.

1.3. Hardware and Software

This project took full advantage of the amazing hardware
platforms and software packages supporting ROS. The
main hardware platforms we used were the TurtleBot2,
seen in Figure 2, and the Intel Realsense ZR300 RGB-D
camera for our vision system, seen in Figure 3. The ZR300
has 4 cameras, two IR cameras for depth, a fisheye lens
and an RGB camera. It also has a pattern emitter for the
IR cameras to help with finding features, similar to how
the Kinect stereo camera works. Furthermore, the ZR300
also has an onboard IMU for better orientation estimation.
Intel also developed the Realsense2 ROS package for their
cameras as well to ouput the image data as ROS support
topics. To calculate the visual odometry from the camera
we used the RTAB-Map SLAM package. Finally, to fuse
all of our sensor inputs with an EKF we used the robot
localization package (Labbe, 2014) (Moore, 2014). All of
the packages mentioned above are open source material.

Bellow are configuration changes from the default settings
we used for RTAB-Map:
1) Number of inliers for RANSAC: 10 Default: 20
Reason: This reduces the computational time for the
RTAB to find loop closures
2) Optimization Strategy: GTSAM
Reason: This greatly improved the performance of the
RTAB-Map odometry

The odometry estimates generated by these packages are
with respect to the odom coordinate frame, a fixed frame
generated by our initial pose. In ROS we specified all of
the transforms between each of the coordinate frames. A
transform tree can be seen below in Figure 5.

2. Experiments and Approach
We tested our system in the motion capture area of
PERCH. We manually drove the robot and captured data

Figure 4. TurtleBot setup as seen from the side with the ZR300 at
the top left of the robot.

view_frames Result

odom

kobuki_base

Broadcaster: /ekf_se_imu
Average rate: 69.416 Hz

Most recent transform: 1525739330.695 (0.025 sec old)
Buffer length: 4.941 sec

camera_link

Broadcaster: /ekf_tuning
Average rate: 39.180 Hz

Most recent transform: 1525739330.805 (-0.085 sec old)
Buffer length: 5.105 sec

map

Broadcaster: /ekf_tuning
Average rate: 20.204 Hz

Most recent transform: 1525739330.775 (-0.056 sec old)
Buffer length: 4.900 sec

camera_rgb_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_depth_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_ir_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_ir2_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_fisheye_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_imu_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_rgb_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_depth_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_ir_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_ir2_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_fisheye_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

camera_imu_optical_frame

Broadcaster: /ekf_tuning
Average rate: 10000.000 Hz

Most recent transform: 0.000 (1525739330.719 sec old)
Buffer length: 0.000 sec

Recorded at time: 1525739330.719

Figure 5. The transform tree for all of the local coordinate systems

from our sensors which we are able to evaluate with
the ground truth using the Vicon system. We tested the
following systems:

1) ZR300 and RTAB-Map Performance with respect
to the camera mounted vertically or tilted towards the floor.
2) ZR300 and RTAB-Map Performance with respect to IR
emitter on and off.
3) Kobuki odometry performance over long periods of
time.
4) EKF performance

3. Results and Findings
3.1. RTAB-Map Performance WRT. Camera Angle

The ZR300 camera data sheet explains that the depth cam-
era works best within a range of 0.5 and 2.8 meters. It is
able to capture features farther than this, but this is the op-
timal range due to the emitter projection. When initially
running ZR300 and RTAB-Map with the camera oriented
vertically in the motion capture area, a large open space

Fogelson

with scarce features, the system performed poorly (see Fig-
ure 6). Many times the odometry would get lost due to few
feature matches. When orienting the camera towards the
floor we achieved much better results (see Figure 7). This
is due to a combination of the speckle patter on the floor of
the motion capture area, providing lots of strong features,
as well as the emitter being able to project onto surfaces to
create more features to track.

Figure 6. RTAB-Map odometry performance with ZR300 camera
oriented vertically

Figure 7. RTAB-Map odometry performance with ZR300 camera
oriented tilted 30 degrees off vertical

3.2. RTAB-Map Performance WRT. Emitter

Given the results above about the improved performance of
the camera tilted towards the floor, we were interested in
validating the effects of the emitter. We tested the RTAB-
Map and ZR300 setup with the emitter on and off. The
results can be seen in Figure 8 and 9. The emitter has sig-
nificant improvement to the performance of the system.

Figure 8. RTAB-Map odometry performance with ZR300 camera
emitter off *(Areas with large spikes are due to RTAB-Map loos-
ing its location)

Figure 9. RTAB-Map odometry performance with ZR300 camera
emitter on.

3.3. Kobuki odometry Performance WRT. Time

We expected the Kobuki odometry to have drift overtime
due to propagating noise in the encoders. We found that
the Kobuki uses it own internal EKF fusing an onboard
gyro with the wheel encoders to limit this issue. We ran the
robot for over 4 minutes in two trials, one with the robot
operating slowly and one with a more aggressive behavior.
The Kobuki robot performed surprisingly well in both tri-
als. In the slow trial the Kobuki robot experienced minimal
drift and had a maximum RMSE of 0.1m. In the more ag-
gressive trial running the robot up to 0.5 m/s the error does
show much stronger indications of drift. The error was still
small, with a max RMSE around 0.4m. Given the trend of
the error over time, it doest seem that the Kobuki robot is
still susceptible to odometry drift for long term operations.
See Figure 10 and 11 for results on the Kobuki performance
with respect to time.

Figure 10. Kobuki odometry performance over 7.5 minutes at
slow speeds

Figure 11. Kobuki odometry performance over 4 minutes at high
speeds

Fogelson

3.4. EKF Performance

We used the robot localization ROS package to configure
our EKF. We found out earlier today that we had missed
a critical part when configuring our EKF. Our odometry
from camera, IMU and Kobuki were in different frames.
See Figure 12 for images of this critical mistake.

Figure 12. In these images you can see that the odometry for the
camera is in the wrong frame, but when projected into the correct
frame show that the correct results

4. Discussion
Much of the semester was spent figuring out ROS and how
to operate and integrate the various hardware and software
packages used. We found a critical error in the final our
of configuring this report that would require the need to
redo most of the data collection. This research will con-
tinue over the Summer under the continued mentorship of
Vasileios Vasilopoulos. We intend to confirm these find-
ings with the issue remedied before moving on. We believe
this change will provide strong results and match our ex-
pectation. After this change, we intend to get a baseline
performance of state estimation with the tools we devel-
oped over the semester on the Minitaur platform. We then
intend to extend the research into using different methods
for state estimation for Minitaur robot.

5. Conclusion
In conclusion, we were able to develop a modular architec-
ture for robot state estimation using the ROS framework,
regardless of robot platform. From this investigation we
have a better understanding of the state of the art vision
systems and VIO software. Overall, I learned a lot about
implementing software using ROS, depth cameras, novel
visual sensors such as event based cameras and SLAM.
This investigation plans to continue and correct the errors
described above.

6. Acknowledgments
Much thanks to my mentor over the semester Vasileios
Vasilopoulos for his extensive help and Dan Koditschek for

allowing me to pursue this study.

7. References
[1] Haldun Komsuoglu, ”Dynamic Legged Mobility—an
Overview”, . May 2009.

[2] Ghost Robotics Minitaur, 2016. Available:
http://www.ghostrobotics.io/minitaur

[3] Labbe, M. et al., ”Online Global Loop Closure Detec-
tion for Large-Scale Multi-Session Graph-Based SLAM”,
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2661-2666, September
2014.

[4] Moore, T. et al., A Generalized Extended Kalman Fil-
ter Implementation for the Robot Operating System”, Pro-
ceedings of the 13th International Conference on Intelli-
gent Autonomous Systems, Springer, July 2014.

